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Abstract

Our experience with using the tuple space abstraction in context-aware applications, evidenced that the traditional

Linda matching semantics based on value equality are not appropriate for this domain, where queries often require the

ability to match on value ranges, deal with uncertainty, and perform data aggregation. Originally developed as the

core tuple space layer for the LIME middleware, LIGHTS provides a flexible framework that makes it easy to extend the

tuple space in many ways, including changing the back-end implementation, redefining the matching semantics, and

providing new constructs. In this paper, we describe the design and programming interface of LIGHTS, and show how

its flexible architecture can be easily extended to define novel constructs supporting the development of context-aware

applications.

1 Introduction

The tuple space model, originally introduced by Linda [9] and once popular in parallel programming, is now expe-

riencing a second wave of popularity in the context of distributed and multi-agent systems. Commercial systems

(e.g., TSpaces [1], JavaSpaces [2], GigaSpaces [3]) as well as academic ones (e.g., MARS [6], TuCSoN [14], Klaim [13],

LIME [12]) are currently available.

In this paper1, we present LIGHTS, a new, lightweight, customizable tuple space framework. Differently from many

of the above systems, LIGHTS was designed with minimality and extensibility in mind, by focusing on providing

support for the basic Linda operations in a local implementation of a tuple space, which can be used directly (e.g., for

1A preliminary version of this paper appeared in [15].
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supporting coordination among co-located agents) or as a stepping stone for a more sophisticated distributed tuple

space implementation. Indeed, LIGHTS was originally developed by the last author as the core local tuple space

support for the LIME system, which builds distributed federation of tuple spaces as well as reactive and transactional

features on top of LIGHTS.

In LIGHTS, the lack of distribution and other sophisticated features is compensated by a design that fosters high

degrees of customization and flexibility. In essence, the tuple space abstraction provided by LIGHTS was conceived

as a framework (in the object-oriented sense) rather than a closed system. The core, built-in instantiation of such frame-

work provides the traditional Linda abstractions, similarly to many other systems. At the same time, however, the

modularity and encapsulation provided by its object-oriented design leaves room for customization, empowering the

programmer with the ability to easily change performance aspects (e.g., changing the tuple space engine) or semantics

features (e.g., redefine matching rules or add new features). This flexibility and extensibility, together its small footprint

and simple design, are the defining features of LIGHTS.

In particular, in this paper we extend LIGHTS with a number of constructs that are expressly conceived to sup-

port context-aware applications. As we discuss in more detail later, tuple spaces can be exploited to store not only

application data, but also contextual data like location, data collected by sensors, and other data acquired from the

physical environment. This choice empowers application programmers with the ability to deal with both kinds of

data—application and context—under a single, unified paradigm, therefore leveraging off the advantages of the tuple

space model, e.g., in terms of decoupling. Nevertheless, context-aware applications demand matching rules and tuple

space access capabilities normally not found in available tuple space systems, like the ability to match on ranges of

values, express uncertainty about data, and perform data aggregation. In this work, we show how these capabilities

can be easily built as extensions to our tuple space framework.

Therefore, in this work we put forth two contributions. First, we present the overall architecture and program-

ming interface of LIGHTS and describe its mechanisms supporting customization and extension. Then, we exploit

these mechanisms to design and implement extensions geared towards context-aware applications. The latter not only

demonstrates the versatility of our framework, but also provides expressive and efficient constructs delivering the

power of the tuple space abstraction in this novel application domain, to a level currently not found in available tuple

space platforms.

The paper is organized as follows. Section 2 is a concise overview of Linda. Section 3 presents the application pro-

gramming interface and overall design of LIGHTS, illustrating how the framework can be easily extended both in terms
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of performance and semantics. Section 4 discusses the extensions we developed to address some of the requirements

posed by context-aware applications. Section 5 briefly reports about implementation details and availability of the

software package. Finally, Section 6 ends the paper with brief concluding remarks.

2 Linda in a Nutshell

In Linda, processes communicate through a shared tuple space that acts as a repository of elementary data structures,

or tuples. A tuple space is a multiset of tuples, accessed concurrently by several processes. Each tuple is a sequence of

typed fields, as in 〈“foo”, 9, 27.5〉, containing the information being communicated. Tuples are added to a tuple space

by performing an out(t) operation, and can be removed by executing in(p). Tuples are anonymous, thus their selection

takes place through pattern matching on the tuple content. The argument p is often called a template or pattern, and its

fields contain either actuals or formals. Actuals are values; the fields of the previous tuple are all actuals, while the last

two fields of 〈“foo”, ?integer, ?float〉 are formals. Formals act like “wild cards”, and are matched against actuals when

selecting a tuple from the tuple space. For instance, the template above matches the tuple defined earlier. If multiple

tuples match a template, the one returned by in is selected non-deterministically. Tuples can also be read from the tuple

space using the non-destructive rd(p) operation. Both in and rd are blocking, i.e., if no matching tuple is available in

the tuple space the process performing the operation is suspended until a matching tuple becomes available. A typical

extension to this synchronous model is the provision of a pair of asynchronous primitives inp and rdp, called probes,

that allow non-blocking access to the tuple space. Moreover, some variants of Linda (e.g., [16]) provide also bulk

operations, which can be used to retrieve all matching tuples in one step2.

3 LighTS: A Lightweight, Customizable Tuple Space Framework

In this section we present the core features of LIGHTS, followed by the mechanisms for customizing and extending the

framework, which are exploited in Section 4 to build new extensions features useful for context-aware applications.

2Linda implementations often include also an eval operation which provides dynamic process creation and enables deferred evaluation of tuple

fields. For the purposes of this work, however, we do not consider this operation further.
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3.1 Programming Tuple Space Interactions in LighTS

The core of LIGHTS is constituted by two packages. The lights.interfaces package contains the interfaces that

model the fundamental concepts of Linda (i.e., tuple spaces, tuples, and fields). Instead, the lights package contains

a built-in implementation of these interfaces, providing the base for extending the framework.

Tuple spaces Figure 1 shows3 the interface ITupleSpace, which must be implemented by every tuple space object.

The interface contains the basic Linda operations described in Section 2, i.e., insertion (out), blocking queries (in,

rd), probes (inp, rdp), and bulk operations (outg, ing, rdg). Tuple spaces are expected to be created with a name,

enabling an application to manage multiple tuple spaces, as suggested in [7]. The name of a tuple space can be retrieved

through the method getName. Finally, ITupleSpace provides also a method count that returns the number of tuples

currently in the tuple space.

Being an interface, ITupleSpace specifies only a syntactic contract between the implementor and the user of the

implementing object, and nothing can be said about the semantics of the actual implementation. Therefore, for instance

it is not possible to prescribe that accesses to the tuple space must be mutually exclusive, as usually required by Linda.

This is an intrinsic limitation in expressivenes of the Java language (and other object-oriented approaches). Neverthe-

less, the built-in TupleSpace class, which implements ITupleSpace, behaves like a traditional Linda tuple space by

preserving atomicity of operations. Moreover, tuple insertion is performed by introducing in the tuple space a copy

of the tuple parameter, to prevent side effects through aliasing. Since tuples may contain complex objects, copying

relies on the semantics of Java serialization, which already deals with aliases inside object graphs. Upon insertion, a

deep copy of the tuple parameter is obtained through serialization and immediate deserialization. A similar process

is performed when a non-destructive read operation (rd, rdp, or rdg) is performed. Nevertheless, our TupleSpace

implementation can be configured to reduce the impact of serialization and trade space for speed, by storing a copy of

the byte array containing the serialized tuple together with the tuple itself. This way, read operations are faster since

they need to perform only a deserialization step to return their result. The desired configuration is specified at creation

time through the constructor, which also enables setting the name of the tuple space.

Tuples Figure 1 shows the interface ITuple, which provides methods for manipulating tuples. A field at a given

position in the tuple (from 0 to length()-1) can be read (get), changed (set), or removed (removeAt). A new field

can be appended at the end of the tuple (add), as well as at any other position (insertAt). The fields composing the

3Exceptions are omitted for the sake of readability.
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tuple can also be read collectively into an array (getFields). No syntactic distinction is made between tuples and

templates—they are both ITuple objects.

The key functionality, however, is provided by the matches method, which is expected to embody the rules govern-

ing tuple matching and therefore is the one whose redefinition enables alternative semantics. This method is assumed

to be automatically invoked by the run-time whenever a match must be resolved, and to proceed by comparing the

tuple object on which matches is invoked—behaving as a template—against the tuple passed as a parameter. By

virtue of encapsulation, the matching rule implemented in matches is entirely dependent on the template’s class, im-

plementing ITuple. Nevertheless, by virtue of polymorphism and dynamic typing, the behavior of the run-time is

the same regardless of the details of the matching rule, since the only assumption it makes is to operate on a template

implementing ITuple.

The default semantics of matches as implemented in the built-in Tuple is the traditional one. When matches is

invoked on a template against a parameter tuple it returns true if:

1. the template and the tuple have the same arity, and

2. the ith template field matches the ith tuple field.

Field matching is described next.

Fields Figure 1 shows the interfaces representing tuple fields. IField provides the minimal abstraction of a typed

tuple field. Methods are provided for accessing the field’s type (getType, setType). As with ITuple, IField

contains a method matches, where the implementing classes specify the matching semantics, as exemplified later on.

The features of IField are enough to represent a formal but not an actual field, in that there is no notion of a field’s

value. This abstraction is provided by the interface IValuedField which extends IField with the accessors neces-

sary to deal with the value (getValue, setValue), as well as with a way to test whether the current field is a formal

(isFormal). Note that setValue accepts any Object as a parameter. Moreover, the field’s type is automatically set

to the parameter’s class.

The need for two separate interfaces is not immediately evident if one considers only the pragmatic need of sup-

porting the basic Linda operations. As a matter of fact, the built-in Field implements both interfaces. However,

this separation provides a cleaner decoupling when matching semantics that do not rely on exact value match are

considered, as in the examples we provide later in this and the next section. The built-in Field is defined so that

this.matches(f) returns true if:
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1. this and f have the same type;

2. if this and f are both actuals (i.e., isFormal() returns false for both of them) they also have the same value.

Equality of types and values relies on the equals method—as usual in Java.

Programming example Let us walk through the simple task of inserting two tuples in a tuple space and retrieving

one of them. We assume a statement import lights.* has been specified. First, we need to create a tuple space:

ITupleSpace ts = new TupleSpace("Authors");

Then, we need to create the two tuples. Fields can be created as:

IField f1 = new Field().setValue("Paolo");

IField f2 = new Field().setValue(new Integer(10));

and then assembled in a tuple:

ITuple t1 = new Tuple();

t1.add(f1);

t1.add(f2);

In alternative, we can leverage of the fact that ITuple methods always return an ITuple object (although not strictly

necessary from a purely semantic standpoint) and combine multiple statements in a single one:

ITuple t2 = new Tuple().add(new Field().setValue("Davide"))

.add(new Field().setValue(new Integer(20));

The tuples can be inserted one at a time, or together in a single atomic step, as in:

ts.outg(new ITuple[] = {t1, t2});

Templates are created just like tuples:

ITuple p = new Tuple().add(new Field().setType(String.class)

.add(new Field().setValue(new Integer(10));

Finally, the probe operation

ITuple result = ts.rdp(p);

will return a copy of the first tuple in result. More examples are available at [4] and [5].
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3.2 Additional Programming Features

The package lights.utils contains a couple of programming features that, albeit not fundamental, greatly simplify

the programming chore.

Accessing Fields by Name Tuples often consist of several fields, to enable a highly selective pattern matching. How-

ever, access to these fields is based on their position in the tuple, which makes programming cumbersome since the

binding between the field and its meaning remains implicitly encoded in the field position.

To simplify the programming task of accessing a tuple’s fields, the package lights.utils.labels provides sup-

port for associating a symbolic name to a field. Two interfaces, ILabeledField and ILabeledTuple essentially

provide accessors for setting and retrieving a field’s label, and for retrieving a field given its label, respectively. In the

same package, LabeledField and LabeledTuple provide specializations of the core classes in the lights package,

providing support for labels.

To get a feel of why this feature is useful in practice, let us consider a tuple 〈lastName, firstName, phone, dept, salary〉

representing an employee’s data. Printing the full name of the employee followed by her salary is normally achieved

by:

System.out.println(t.get(0)+" "+t.get(1)+", "+t.get(4));

Assuming the proper labels have been attached to the tuple fields, the code above can be rewritten into the more

understandable:

System.out.println(t.get("Last name")+" "+t.get("First name")+", "+t.get("Salary");

As we discuss later on, this simple functionality becomes key in providing enhanced expressiveness in some of ad-

vanced features discussed in the rest of this paper.

From Objects to Tuples—and Back Using the tuple space abstraction in the context of an a object-oriented language

like Java often forces the programmer to face clashing programming needs. According to the base principles of object-

orientation, objects must encapsulate their own data to prevent unauthorized access and to avoid undesired side effects.

On the other hand, tuples must expose all of their fields to allow pattern matching. Consider an instance of a class

Employee holding information about the name of an employee, her phone number, the department she is with, and

her monthly salary. If this information is to be stored in a tuple space, there are usually two alternatives. The first one

is to represent it as a tuple with a single field containing the Employee object. However, this solution greatly limits the
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power of pattern matching, preventing queries as “find all the employers working in R&D earning less than $1000 a

month”. The alternative is for the programmer to manually “flatten” the object into a tuple (e.g., with the same format

we used when discussing labels) each time an out is performed, and perform the opposite process each time a tuple

is retrieved from the tuple space, which is clearly undesirable and awkward. To help the programmer deal with this

frequent and error-prone task in a more organized way, LIGHTS provides support through the interface Tuplable

and the class ObjectTuple, shown in Figure 2.

To enable flattening of an object into a tuple, the object must implement the interface Tuplable. The method

toTuple contains the application-dependent code responsible for flattening the object. Transforming the object into a

tuple and inserting it in the tuple space can then be done straightforwardly as in

ts.out(e.toTuple());

where we assume, for instance, that e is of type Employee and implements Tuplable by providing the appropriate

code.

Retrieving an object back from a tuple is only a little more complicated. The necessary processing must be encoded

by the programmer into the method setFromTuple, which allows to set an object’s attributes based on the content

of the parameter tuple. However, this requires the programmer to manually create an “empty” copy of the object and

set its attributes, each time. To further simplify the process, LIGHTS provides the ObjectTuple class, which extends

the default Tuple implementation by providing the ability to “remember” the type of the object a tuple was originally

created from. With this facility, a tuple can be read from the tuple space and the corresponding object recreated as in

ObjectTuple ot = (ObjectTuple) ts.rd(template);

if (ot.getClassName.equals("Employee")) e = (Employee) ot.getObject();

The implementation of getObject first invokes the default constructor of the object4, and then automatically calls

setFromTuple on the newly created instance by passing this as the tuple parameter from which to reconstruct the

object state.

Clearly, the solution we just described still requires the programmer to write the code determining how the flattening

process is performed, since this is application-dependent. However, it greatly improves the quality and readability of

the resulting code, by properly encapsulating this code into the definition of the object, rather than dispersing it into

the application code.

4Implementation of the default constructor is a requirement for using ObjectTuple.
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3.3 Customizing LighTS

The LIGHTS framework is designed to provide the minimal set of features implementing a Linda-like tuple space

and, at the same time, to offer the necessary building blocks for customizing and extending it. We now discuss the

most relevant customization opportunities, which are exploited in the extension packages included in the LIGHTS

distribution.

3.3.1 Changing the tuple space engine

The tuple space implementation in the lights core package is very simple5. Notably, the data structure holding

tuples is simply an in-memory java.util.Vector object, which is scanned linearly upon a query operation. This

design is motivated by the need to support deployment on resource-constrained devices—a requirement of the LIME

project—and admittedly may not perform reasonably in other scenarios.

Nevertheless, the information hiding provided by the core interfaces greatly simplifies the task of realizing more

sophisticated implementations (e.g., providing persistence, checkpointing, or more scalable matching algorithms), with

little or no impact on the application code. At one extreme, one could even sneak a commercial system (e.g., TSpaces

or GigaSpaces) behind the LIGHTS interfaces, e.g., to enable the development of applications that can be deployed on

top of different tuple spaces engines. In a research context, this is particularly useful to evaluate different alternatives

without the need to fully rewrite the application.

To simplify this development strategy, lights.adapters provides the building blocks necessary to replace the

built-in implementation in lights. The classes TupleSpace, Tuple, and Field in such package provide wrappers

that on one hand implement the required lights interfaces, and on the other contain an adapter object implementing

the required functionality, and to which interface operations are delegated6. The abstract class TupleSpaceFactory,

to be derived by the actual adaptation package, enables selection of the appropriate set of adapter classes at start-up.

To illustrate these features, an adapter for TSpaces is included in the current LIGHTS distribution. Also, a tuple space

adapter for J2ME has been implemented, which again confirms not only the versatility of the framework, but also that

its inherent simplicity eases its deployment even on devices with tight resource constraints, like those often found in

context-aware applications.

5Space limitations force us to redirect the reader looking for more details to the online documentation and source [4].
6Extensions are not supported by adapters.
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3.3.2 Changing the matching semantics

Tuple space systems vary considerable in terms of their matching semantics. For instance, TSpaces enables the use

of subtyping rules in matching field types, and relies on the (re)definition of the equals method for matching field

values. Instead, JavaSpaces matches two fields by comparing their serialized forms. Also, a JavaSpaces tuple (or

entry in Sun’s jargon) is represented by a class, and therefore subtyping rules among tuples take part in matching. In

TSpaces, this is enabled only if tuples are derived from a specific root class, otherwise it is not allowed by default Tuple

class. Finally, TSpaces requires two matching tuples to have the same arity, while JavaSpaces lifts this constraint when

a tuple is a subtype of another. This short comparison evidences that several variations are possible, with tradeoffs

in expressiveness, ease of use, and integration with object-orientation. As a consequence, committing to a particular

choice may end up hampering development of some applications.

LIGHTS was designed since the beginning with this problem in mind. The default matching in LIGHTS relies on

the equals method, disallows field or tuple subtyping, and requires equal tuple arity. Nevertheless, the lights.ex-

tensions package contains several examples that show how easy it is to provide alternative semantics, by exploiting

interfaces and other aspects of our object-oriented design. Here, we briefly describe some of these extensions.

Field matching As an example of how to redefine matching between fields, the class SubtypeField, takes subtype

compatibility into account. Providing this feature is as simple as subclassing lights.Field and redefining matches

by including the additional constraint

getType().isAssignableFrom(field.getType)

where field is the input parameter of matches. Analogously, NotEqualField supports matching on inequality.

Modifications can be more complex. For instance, the same package contains also a RegexField that allows matching

of string fields using regular expressions and requires additional attributes and methods for setting and compiling the

expression using the Java libraries.

Tuple matching Pattern matching between tuples can be redefined similarly. PrefixTuple extends Tuple by al-

lowing a template of arity l to return a successful match against any tuple whose first l fields match, in order, with the

template ones—a need that often arises in practice in tuple space based applications. Incidentally, this also provides a

straightforward way to retrieve all tuples in the tuple space. Again, the only change required is in the implementation

of matches.
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Another useful feature, with a more complex implementation, is provided by BooleanTuple, which extends Tuple

to enable pattern matching by using arbitrary boolean expressions over a tuple’s fields—not just their AND conjunction

as in standard matching. Let us consider an application where printers are modeled as a tuple 〈kind, numJobs, ppm〉,

and the programmer needs to find a laser printer such that either its spool queue is empty or it can print at 15ppm.

The programmer can obviously compensate for the absence of an OR operator by performing multiple queries in

sequence—in our case, one for a laser printer with an empty queue and, if this fails, one for a laser printer at 15ppm.

However, besides forcing the programmer to use a more verbose programming idiom, this solution is rather inefficient,

since it requires multiple traversals of the tuple space. The problem is exacerbated in the case of the bulk operations

rdg and ing, where all the multiple queries must be executed.

Instead, BooleanTuple behaves as a traditional tuple but in addition it provides a setMatchingExpression

method that allows users to specify a template in the form of a logical formula. A valid formula must be a well-formed

boolean expression, which can contain any combination of AND, OR, and NOT operators, specified using the Java

syntax. The fields involved in the expression can be specified either by using their position in the tuple, prepended by

the # character, or, if they are instances of LabeledField, by using directly their label.

For instance, with reference to the previous example, let us assume that two actual fields labeled laser and empty

are available respectively to match a laser printer and one with a queue with zero jobs, and that a third field takes care

of matching a value of 15. With these definitions, which we omit due to space limitations, we can easily search for the

desired printer:

BooleanTuple template = new BooleanTuple().add(f1).add(f2).add(f3);

template.setMatchingExpression("laser && (empty || #3)");

ITuple tuple = ts.rdp(template);

It is worth noting how the advantages brought by the customization of the matching semantics we described thus far

are not limited to the tuple space access using the traditional Linda operations, but may extend to other constructs

provided by alternative models. For instance, several systems offer reactive features, either event-based as in TSpaces,

JavaSpaces, MARS [6], and TuCSoN [14], or state-based as in LIME [12]. In all these systems, some kind of reaction

whose behavior is specified by the programmer, is triggered when a tuple matching a given template is manipulated

through an operation or observed in the tuple space. Redefining the template used in these operations may greatly

enhance their expressive power.
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At the same time, special care is needed if these customized features are being used in a distributed setting. Consider

even a simple client-server scheme, where a tuple space is being accessed remotely by several clients. If the client uses

an extension (e.g., RangeField or a programmer-defined one) in a query operation, the corresponding code must

be somehow present on the server host for the tuple space to be able to apply the desired matching. Pre-deploying

the classes is possible only under the assumption of a closed system: if programmers are able to define their own

extensions, appropriate mechanisms (e.g., involving code mobility [8]) must be in place.

Finally, many other extensions are clearly possible. One could easily implement SQL- or XML-based matching, and

many others. Thus far, the development of extensions has been driven by pragmatic needs that arose in our experiences

when using LIGHTS in combination with the LIME middleware. In the next section, we illustrate some extensions we

found useful in developing context-aware applications.

4 Supporting Context-Aware Applications

As we discussed in the introduction, the tuple space abstraction is particularly well-suited for context-awareness.

Context data can be stored in the tuple space, and made accessible by leveraging of the nice decoupling properties

of the Linda approach. Nevertheless, the standard matching based on exact values is largely insufficient for context-

aware applications. Indeed, the motivation for the work described in this paper came from an experience in building

a simple location-aware application in LIME [11], in which we realized precisely the aforementioned shortcomings of

the traditional tuple space model. Here we describe briefly the outcomes of this experience, in that they provide the

rationale for the features we describe in this section.

The work in [11] describes a simple location-aware application supporting collaborative exploration of geographical

areas, e.g., to coordinate the help in a disaster recovery scenario. Users are equipped with portable computing devices

and a localization system (e.g., GPS), are freely mobile, and are transiently connected through ad hoc wireless links.

The key functionality provided is the ability for a user to request the displaying of the current location and/or trajectory

of any other user, provided wireless connectivity is available towards her. The implementation exploits tuple spaces

as repositories for context information—i.e., location data in this case. The LIME primitives are used to seamlessly

perform queries not only on a local tuple space, but on all the spaces in range. For instance, a user’s location can be

determined by performing a read operation for the location tuple associated to the given user identifier. The “lesson

learned” distilled from this experience is simple and yet relevant: tuple spaces can be successfully exploited to store

12



not only the application data needed for coordination, but also data representing the physical context. The advantage

is the provision of a single, unified programming interface—the coordination primitives—for accessing both forms of

data, therefore simplifying the programmer’s chore. Interestingly, in this experience the idea was demonstrated using

the distributed tuple space implementation provided by LIME, but the conclusion we just made fully holds also in the

case where an entirely local tuple space is used to coordinate the activities of co-located multi-agents.

Nevertheless, as discussed in [11], the traditional matching semantics of Linda, based on comparing the exact values

of tuple fields, is insufficient for the needs of context-aware applications. Indeed, context-aware queries rarely revolve

around exact values. For instance, in a sensor monitoring application, it may be required to find the identifiers of

all the temperature sensors registering a value between 20 and 25 degrees. Or, in the application of [11] it may be

needed to find the users within 500m, or those within r meters from the point (x, y). Often, even these queries are

too precise, in that the user may have enough information only to formulate requests as informal as “find the sensors

recording a hot temperature”, or “find the users close to me”. Moreover, context-aware applications frequently pose

another requirement, namely, the need for aggregation. Data comes from multiple sources, with multiple formats, and at

different levels of abstraction. On one hand, it is useful to store the raw data in the tuple space, to provide applications

or agents to process it directly. However, in other situations, it is desirable to access the data through some higher-level

view, where the values contributed by multiple tuples are accessed as a single, aggregated value (e.g., the average),

or where tuples with a given format (e.g., holding a location’s coordinates) are interpreted in a different way (e.g.,

distance from a given point).

These needs sometimes surface also in conventional applications, but they are definitely exacerbated and more fun-

damental in context-aware ones. In the rest of this section we present our extensions to LIGHTS fulfilling these require-

ments and therefore supporting the development of context-aware applications.

4.1 Matching on Value Ranges

In context-aware applications, many queries require to determine whether a given value from contextual data (e.g.,

temperature from a sensor) is within an allowed range (e.g., 35-38oC). Building this capability on top of a conventional

system that provides only exact value matching entails considerable programming effort and computational overhead.

For instance, a common hack is to retrieve tuples by matching on the other fields, and explicitly code in the application

the matching on the field involving a value range.

LIGHTS overcomes this limitation by leveraging the mechanisms for extension we illustrated in the previous section.
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The class RangeField in the extensions package provides methods for specifying the lower and upper bounds of

the value range and whether they are included in it, as shown in Figure 3. The snippet below shows how to match over

the aforementioned temperature range, without including the lower bound of 35oC:

RangeField rf = new RangeField()

.setLowerBound(new Float(35), false)

.setUpperBound(new Float(38), true);

ITuple result = tuplespace.rdp(new Tuple().add(rf));

Bounds can be represented by any object implementing the interface java.lang.Comparable. RangeField extends

lights.extensions.TypedField—a convenience abstract class that serves the only purpose of implementing the

IField interface—by simply adding attributes holding information about bound values and redefining matcheswith

the trivial constraint necessary to check that the field being compared against falls in the required range. As the reader

can see, the extent of modifications necessary to implement the required semantics is minimal and extremely simple,

while the impact on expressiveness is remarkable.

4.2 Fuzzy Matching: Dealing with Uncertainty

In several applications the power of range matching is not enough, as users may not have the knowledge required to

formulate precise queries. For instance, a user may request to find a restaurant that is close to her, without bothering

about estimating a reasonable range based on the urban density of the surrounding area. Indeed, people commonly

describe an object property using words like “hot”, “far”, “tall”, or “cheap”. Although intuitive, these concepts bear a

high degree of imprecision and uncertainty, and cannot be modeled using the traditional set theory. Nevertheless, the

problem can be tackled successfully by using fuzzy logic.

Basics of fuzzy logic Unlike conventional logic, in fuzzy logic [10] a predicate may assume any value in a continuous

range, usually defined between 0 (totally false) and 1 (totally true). From a set theoretical standpoint, this means that

each logic element belongs to a particular set with a certain degree of membership. The function that defines the

mapping between the elements of a particular universe of discourse and their degree of membership to a given set is

called membership function.

For example, let us consider the problem of characterizing water temperature. When water is freezing at 0oC every-

body agrees that it is definitely cold—and similarly hot when boiling at 100oC. But what about water at 75oC? Modeling
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this situation entails defining the fuzzy sets, i.e., the intuitive concepts used in the logic descriptions—e.g., hot, warm,

and cold in our case. Moreover, each set must be associated to a membership function. Figure 4 shows a possible choice

for our example where the value 75oC (that is called crisp) belongs to two different fuzzy sets or, in other words, “water

at 75oC” is at the same time warm and hot, with two different degrees of membership.

To enable reasoning, fuzzy logic also provides operators to combine fuzzy predicates in more complex formulas.

These are adaptations of the well-known intersection (AND), union (OR), and complement (NOT), to deal with degrees

of truth expressed as real numbers. More details can be found in [10].

In LIGHTS, the tuple space contains crisp values, which applications can query using conventional matching or the

fuzzy matching provided by lights.extensions.fuzzy.

Programming model In our API, fuzzy sets and their membership functions are combined in what we call a fuzzy

term. A collection of fuzzy terms represents, in programming terms, a fuzzy type. As the reader may argue, matching

based on fuzzy logic requires the fuzzy type of two fields to match.

The following code snippet shows how to model the water temperature example with our API:

FuzzyTerm ft =

new FuzzyTerm("warm", new PiFunction(50.0f,25.0f);

FloatFuzzyType temp =

new FloatFuzzyType("Temperature",-100,100)

.addTerm(ft);

The first line defines a new fuzzy term representing the warm concept. A term is defined by a name and a membership

function, in this case a PiFunction centered at 50oC and with a width of 25oC, yielding the bell shape in Figure 4.

Our library provides several pre-canned functions (e.g., Triangle, Trapezoid, Ramp, Step, . . . ), and enables the

programmer to easily create her own, by implementing the interface IMembershipFunction.

The second line creates a new fuzzy type, and binds to it the previously created term. (Details representing hot and

cold are omitted.) A fuzzy type is characterized by a name and two parameters delimiting its domain. In general,

the crisp values in a fuzzy type could be of any nature, and therefore a FuzzyType class is provided whose elements

can be any Object instance. In practice, however, real numbers are used most of the times. Therefore, we provide a

subclass FloatFuzzyType, used in the example.
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Integrating fuzzy logic and tuple spaces We are now ready to describe how to exploit fuzzy matching in LIGHTS.

The full API provided by our extension is illustrated by the UML diagram in Figure 5. Two new classes are provided,

FuzzyField and FuzzyTuple, which implement respectively IField and ITuple and enable use of fuzzy logic at

two different levels.

A FuzzyField can be included in a conventional template, e.g., a lights.Tuple object. In this case, the overrid-

den method matches evaluates based on fuzzy logic, and returns true only if the membership value of the crisp data

found in the field being compared is higher than a given threshold that can be chosen by the user. A FuzzyField is

still characterized by type and value, although these are expressed in a fuzzy fashion. In the following code snippet

FuzzyField ff = new FuzzyField()

.setType(Float)

.setFuzzyType(temp)

.setFuzzyValue(new FuzzyValue("warm"));

a FuzzyField is created. First, the type of the crisp values is set, to enable “pre-filtering” of matching values—the basic

type matching requirement of Linda is still in place. Then, the fuzzy type defined above for temperature is associated

to the field, followed by the “warm” concept. Fuzzy concepts are represented by an instance of the class FuzzyValue,

which enables the programmer to specify a fuzzy concept. In addition, FuzzyValue provides the machinery to specify

concepts like “very hot” or “somewhat cold” and automatically adjust the corresponding membership function. Space

limitations prevent us from going into further details: anyway, this is performed using well-known techniques [10].

Figure 6 illustrate pictorially the difference between traditional matching and matching with fuzzy values.

The true power of fuzzy logic, however, is unleashed only when FuzzyFields are used in a FuzzyTuple. As usual,

a FuzzyTuple matches another tuple only if all the fields match in order. However, in this case the conjunction of the

result of pairwise field matching is not performed using the boolean operator AND, but with its fuzzy counterpart.

The method FuzzyTuple.matches does not rely on FuzzyField.matches, as this implements ITuple.matches

and therefore returns a boolean. Instead, it relies on the method FuzzyField.fuzzyMatches, which returns a float

representing the degree of membership of the crisp value in the fuzzy set specified by FuzzyValue. If the tuple

contains also traditional fields, their matches method is invoked, and the boolean return value converted to 0.0f if

false, or to 1.0f if true. The float values are then combined by FuzzyTuple.matches using the default fuzzy

AND operator, or a user-defined one. This feature enables the formulation of complex fuzzy queries, possibly mixed

with conventional ones, e.g., retrieving the reading from a sensor that is close and is recording a cold temperature.
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Class Field Composition

Tuple Logical AND

BooleanTuple (default) Logical AND

BooleanTuple (using setMatchingExpression) Any expression containing boolean operators

FuzzyTuple (default) Fuzzy AND

FuzzyTuple (using setMatchingExpression) Any expression containing boolean and fuzzy operators

Table 1: Comparing the expressive power of various matching semantics.

Finally, FuzzyTuple also provides a simple language that enables one to write more complex and flexible queries

using operators other than AND, also provided by our library. This way, it is possible to write the equivalent of logical

formulas, as in:

(Distance is not Far) || (Price is Cheap)

The reader has probably noticed the analogy with the BooleanTuple class we described in Section 3.3.2. Indeed,

FuzzyTuple extends BooleanTuple, and overrides the method setMatchingExpression to enable the definition

of arbitrary predicates. Some important differences must be underlined, however. First, the introduction of the is

operator that returns the degree of membership to the given FuzzyTerm. Second, FuzzyTuple supports not only

arbitrary boolean expressions, but also expressions that involve user-defined fuzzy operators, as we discussed above.

Third, the values that are involved in the expressions (e.g., Far and Cheap) can be fuzzy values. Table 1 provides a

concise albeit informal comparison of the expressive power provided by conventional tuples, BooleanTuples, and

FuzzyTuples.

4.3 Aggregating Data

A need often arising in context-aware applications is the one for the ability to deal with aggregated information. This is

addressed in LIGHTS by two distinct mechanisms, one enabling aggregation over fields in the context of a given tuple,

and the other enabling aggregation over multiple tuples contained in the tuple space. In both cases, the application

programmer is provided with a way to specify the portion of data to be aggregated and the semantics of the data

transformation involved. Both mechanisms are described next.
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4.3.1 Aggregating Fields: Virtual Tuples

A concise example helps in defining the need we address. Let us consider a tuple space containing location information,

where each tuple holds the location of a user expressed in Cartesian coordinates. (This solution was actually used in

the experience described in [11].) The task of selecting the users at a given distance should be ideally as simple as

specifying a template with the required distance. In practice, however, it involves computing
√

(x− x0)2 + (y − y0)2,

where (x0, y0) are the coordinates of the agent issuing the query and (x, y) those of a location tuple. Since the Linda

semantics does not provide a form of matching based on a function of two or more fields, this matching must be

specified entirely outside the tuple space framework, as part of the application logic.

LIGHTS tackles the problem by decoupling the representation of the tuples stored in the tuple space from those

manipulated by the application, by means of virtual tuples. Again, an example is useful in clarifying their use. Let us

consider the possibility of allowing the programmer to “see” the concrete tuples stored in the tuple space in the form

p = 〈?UserID,?int,?int〉 as if they were instead virtual tuples in the form p′ = 〈?UserID,?int〉, where the second field of

p′ is the sum of the last two fields of p. If this were possible, a rdg(t) using the virtual tuple t = 〈?UserID,50〉 could

match the concrete tuples 〈’u15’,20,30〉 and 〈’u23’,1,49〉. By substituting sum with distance, we would have found a

solution to the aforementioned problem of localizing users. Figure 7 illustrates the concept graphically.

Using our LIGHTS extension, this feature can be provided by the following code snippet:

ITuple vt = new VirtualTuple(t) {

public ITuple virtualize(ITuple tuple) {

ITuple res = new Tuple().add(tuple.get(0));

IValuedField f = (IValuedField) tuple.get(1);

int v1 = ((Integer) f.getValue()).intValue();

f = (IValuedField) tuple.get(2);

int v2 = ((Integer) f.getValue()).intValue();

res.add(new Field().setValue(new Integer(v1+v2)));

return res;

}

};

vt.add(new Field().setType(UserID.class))

.add(new Field().setType(Integer.class))

.add(new Field().setType(Integer.class));
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The first line creates a new VirtualTuple and initializes it with the template used at the application level—the virtual

tuple, in our case t = 〈?UserID,50〉. The last three lines define instead the template that filters out the concrete tuples

actually present in the tuple space. To enable matching, the concrete tuples must be somehow transformed to fit the

format of the virtual tuple. The transformation is specified by the method virtualize, which in the example code

above is defined using an anonymous inner class. When a match is requested on vt, its overridden matches method

decides whether the tuple being compared is a match by first comparing it with the standard rules against vt’s fields.

If this match is successful, the concrete tuple is transformed by calling virtualize, and matched against the virtual

tuple t. This latter matching is governed by the semantics of the matches method associated to the dynamic type of

t, and its result determines the overall matching outcome.

4.3.2 Aggregating Tuples: Tuple Space Views

Tuple virtualizers provide an elegant way to customize on the fly the tuple representation, therefore enabling also

aggregation over the tuple fields. Nevertheless, their scope is limited to a single tuple, whereas context-aware appli-

cations often demand aggregation over multiple tuples. A typical example is provided by environmental monitoring,

where the data independently collected by multiple sensors is often averaged before being provided to applications, to

make the data more resilient to transient variations. Imagine an application that receives tuple containing data sensed

by multiple sensors (e.g., for temperature, light, acoustic phenomena) and stores them in the tuple space. Data is some-

times accessed in its raw form, and sometimes in aggregate form (e.g., through its average). It would be useful if the

programmer were able to see this second option again as a tuple space, without the need to manually compute over

and over the aggregation by herself.

This problem is dealt with in LIGHTS by introducing the notion of a tuple space view defined over a tuple space.

The tuples contained in a tuple space view are obtained from a subset of those in the original tuple space, through an

automatic, application-defined transformation. In a sense, a view realizes on the tuple space what a virtual tuple does

on a single tuple, by providing a virtual tuple space built on top of the concrete tuple space associated to it.

A view is created by simply invoking its constructor that, as shown in Figure 8, expects as parameters the tuple space

the view is built upon as well as the rules to maintain it. Once the view is created, as shown in the figure only the rdp

and rdg operations are available, since it is not possible to manipulate directly the view.

The transformation from the concrete tuples in the tuple space to those in the view is encapsulated in the set of

Aggregator objects passed as a parameter to the constructor. Each of these object effectively defines a function from
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a set of tuples in the concrete tuple space (specified by the template) to another set of tuples to become part of the

tuple space view. The abstract class Aggregator, also shown in Figure 8, provides accessors for the template, as

well as an abstract method aggregate that is expected to embody the aforementioned programmer-defined function.

When an operation is invoked on the TupleSpaceView, this method is automatically called and supplied with the

set of concrete tuples matching the template. In turn, aggregate returns the virtual tuples logically belonging to the

TupleSpaceView. The Aggregator class contains a built-in template matching all tuples in the tuple space, defined

using PrefixTuple. Therefore, if no template is set, the aggregate method operates on all the tuples in the target

tuple space. Figure 9 illustrates the concept.

Note how the behavior of the aggregate method does not necessarily entail collapsing multiple tuples into one

or more. For instance, in some cases it maybe useful to “join” multiple tuples containing values about different phys-

ical entities into one or, in turn, “split” long tuples into their individual values. For instance, with reference to the

aforementioned environmental monitoring application, imagine that the application needs to determine whether there

are people in a given area, based on whether there is a high temperature and a high noise. Using the conventional

features, the application should retrieve all the tuples with high temperature and all those with high noise, and then

manually check whether one or more rooms exist that belong both tuple sets. Using views, the programmer can spec-

ify how to combine temperature and light readings from the same room in a single tuple, and then query the view as

desired, e.g., using a fuzzy template 〈Room=*, temperature=high, noise=high〉. Therefore, ultimately, the nature of the

transformation performed by aggregate is entirely up to the programmer.

In our current implementation, the aggregate methods are called every time a read operation is invoked, therefore

re-building the view dynamically each time. This straightforward solution guarantees that the view is always consis-

tent with the tuple space it builds upon, but it may generate a performance problem in the case the tuple space contains

a large number of tuples and the view operations are invoked frequently. An alternative strategy is to cache the result

of previous executions of the aggregate method. This solution avoids unnecessary computation if the associated

tuple space has not changed, but it requires a tighter integration between the TupleSpaceView class and the tuple

space holding the concrete tuples, since the latter must somehow notify the former when a tuple of relevance for the

view has been inserted or removed, and therefore the view must be recomputed. This latter design can be easily accom-

modated by constraining TupleSpaceView to operate in conjunction with a subclass of TupleSpace (or any other

class implementing ITupleSpace) providing the necessary coupling. We are currently investigating more optimized

solutions to based on this ideas.
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As an example of how to program and exploit tuple space views, consider a context-aware application monitoring a

physical environment containing several sensors. Each sensor records the temperature and inserts it in the tuple space

together with its location, using a tuple 〈x, y, temp〉. Suppose we are interested in retrieving the average value in the

square zone defined by (xmin, ymin) and (xmax, ymax), e.g., because a fire is reported in that area and finer-grained

monitoring is necessary. First, we need to define the aggregation function computing the average temperature. This is

accomplished by extending the Aggregator class and implementing the aggregate method:

class AvgAggregator extends Aggregator {

public ITuple[] aggregate(ITuple[] tuples) {

float res = 0;

for (int i=0; i<tuples.size; i++)

res = res + tuples[i].get("temp").getValue();

res = res/tuples.size;

return new Tuple().add(new Field().setValue(new Float(res)));

}

}

Next, we create a template using the RangeField class we introduced in Section 4.1 to select only those tuples whose

location belongs to the desired zone, and instantiate our aggregator by restricting its operation to these tuples, by

passing it the template just defined.

RangeField xf = new RangeField().setLowerBound(new Float(xmin),true)

.setUpperBound(new Float(xmax), true);

RangeField yf = new RangeField().setLowerBound(new Float(ymin),true)

.setUpperBound(new Float(ymax), true);

ITuple template = new Tuple().add(xf).add(yf).add(new Field().setType(Float.class));

Aggregator a = new AvgAggregator().setTemplate(template);

Now, we are ready to generate the view by passing the tuple space ts it operates upon and our aggregator:

TupleSpaceView view = new TupleSpaceView(ts,{a});

We can now read from the tuple space view as if it were a normal tuple space, containing 〈Float〉 tuples, as defined by

our aggregator:

ITuple avgTemplate = new Tuple().add(new Field().setType(Float.class));

ITuple t = view.rdp(avgTemplate);
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#tuples tuple size LighTS TSpaces GigaSpaces

100 1000 0.749 0.786 2.536

1000 1000 1.871 4.394 5.534

10000 1000 62.781 120.015 26.611

1000 100 1.806 4.207 5.473

1000 10000 2.111 4.386 5.899

1000 100000 4.166 9.369 10.172

Table 2: A simple performance test on tuple insertion and reading. In each run, we insert several tuples with out, and

then read them in sequence with rd. The first field is an integer counter (on which pattern matching is performed),

while the second is a byte array. Tests are ran 5 times and results averaged. Tuple sizes are in bytes, times are in

seconds. The test machine is a Pentium 4, 2.4 GHz, 1 Gbyte RAM running Sun’s JRE 1.4.2 under Debian Linux.

5 Implementation

LIGHTS is implemented in Java, using J2SE 1.4. The core lights package is only about 150 lines of code. The

adapters and extensions (and especially the fuzzy package) bring the total number of lines to 1,500. The sizes of

jar files are 15Kbytes and 75Kbytes respectively, demonstrating the small footprint of the system.

Without the pretense to be accurate and exhaustive, but with the only intent to get a feel of the performance of

LIGHTS, Table 2 reports some tests we ran against some well-known commercial systems. These preliminary data show

how LIGHTS is always faster than its competitors, which confirms that its lightweight design pays off. In part, this can

be attributed to the fact that the systems considered do not distinguish between local and remote communication,

always using inter-process communication—a clear loss when only a local tuple space is needed. The one case in

Table 2 where LIGHTS is slower than GigaSpaces is probably determined by the techniques exploited in this system to

deal with scalability. Definitive results would need to take into account more sophisticated usage profiles—which is

nonetheless outside the scope of this paper.

6 Conclusion

In this paper we presented LIGHTS, a lightweight, customizable framework supporting the tuple space abstraction

made popular by Linda, and exploited its flexible architecture to provide dedicated constructs for the development of
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context-aware applications. We illustrated the architecture and application programming interface of LIGHTS, moti-

vated the use of tuple spaces for context-aware applications and the related challenges, and showed how novel support

for this domain can be easily built on top of LIGHTS. Future work will address additional optimizations of the mecha-

nisms we described here, and integration within the LIME middleware.

LIGHTS is released as open source under the LGPL license, and is available at [4].
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public interface ITupleSpace {

String getName();

void out(ITuple tuple);

void outg(ITuple[] tuples);

ITuple in(ITuple template);

ITuple inp(ITuple template);

ITuple[] ing(ITuple template);

ITuple rd(ITuple template);

ITuple rdp(ITuple template);

ITuple[] rdg(ITuple template);

int count(ITuple template);

}

public interface ITuple {

ITuple add(IField field);

ITuple set(IField field, int index);

IField get(int index);

ITuple insertAt(IField field, int index);

ITuple removeAt(int index);

IField[] getFields();

int length();

boolean matches(ITuple tuple);

}

public interface IField {

Class getType();

IField setType(Class classObj);

boolean matches(IField field);

}

public interface IValuedField extends IField {

boolean isFormal();

java.io.Serializable getValue();

IValuedField setValue(java.io.Serializable obj);

}

Figure 1: The core interfaces of LIGHTS.25



public interface Tuplable {

ITuple toTuple();

void setFromTuple(ITuple tuple);

}

public class ObjectTuple extends Tuple {

public ObjectTuple(Class c);

public Tuplable getObject();

public String getClassName();

}

Figure 2: Types for flattening objects into tuples—and vice versa.

public class RangeField extends TypedField {

public RangeField()

public RangeField setLowerBound(Comparable low, boolean included)

public RangeField setUpperBound(Comparable up, boolean included)

public Comparable getLowerBound()

public Comparable getUpperBound()

public boolean isLowerBoundIncluded()

public boolean isUpperBoundIncluded()

public boolean matches(IField field)

}

Figure 3: The class RangeField.
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Figure 4: Membership functions and fuzzy sets.

26



FuzzyField

<<create>> FuzzyField()

set(field: IField) : IField

getFuzzyValue()

getFuzzyThreshold() : float

setFuzzyValue(fuzzyValue: FuzzyValue) : FuzzyField

setFuzzyThreshold(threshold: float) : FuzzyField

getFuzzyType() : FuzzyType

setFuzzyType(fuzzyType: FuzzyType) : IField

matches(field: IField) : boolean

fuzzyMatches(field: IField) : float

toString() : String

FuzzyTuple

getFuzzyTypeByName(name: String)

getCrispObjectByName(name: String,tuple: ITuple) : Object

getOperatorByName(term: String)

calc(formula: String,tuple: ITuple) : float

parse(formula: String,tuple: ITuple) : float

matches(tuple: ITuple) : boolean

setThreshold(threshold: float) : void

getThreshold() : float

getAdvancedQuery() : String

setAdvancedQuery(query: String) : void

getAndOperator()

getOrOperator()

setAndOperator() : FuzzyTuple

setOrOperator() : FuzzyTuple

FuzzyType

<<create>> FuzzyType(name: String)

getName() : String

addTerm(fuzzyTerm: FuzzyTerm) : void

getTerm(name: String) : FuzzyTerm

getTerms() : Iterator

getMembershipValue(term: String,crispObject: Object) : float

getTermsNumber() : int

gertTerm(crispObject: Object) : FuzzyTerm

FuzzyValue

<<create>> FuzzyValue(value: String)

setValue(value: String) : void

getValue() : String

setModifier(modifier: String) : void

getModifier() : String

FloatFuzzyType

<<create>> FloatFuzzyType(name: String,min: float,max: float)

<<create>> FloatFuzzyType(name: String,min: float,max: float,units: String)

setNearlyFunction() : void

setSmallerFunction() : void

setGreaterFunction() : void

getUnits() : String

getMax() : float

getMin() : float

getMembershipValue(term: String,crispValue: float) : float

getTerm(crispValue: float) : FuzzyTerm

generateTrianglePartition(terms: String[]) : void

generatePiPartition(terms: String[]) : void

isNearly(crisp: float,reference: float) : float

isGreater(crisp: float,reference: float) : float

isSmaller(crisp: float,reference: float) : float

FuzzyTerm

<<create>> FuzzyTerm(term: String)

getMembershipFunction() : IMembershipFunction

setMembershipFunction(membershipFunction: IMembershipFunction) : void

getTerm() : String

setTerm(term: String) : void

<<Interface>>

IMembershipFunction

getMembershipValue(object: Object) : float

Figure 5: The UML class diagram of the package lights.extensions.fuzzy.
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Figure 6: Replacing traditional matching (left) with matching based on fuzzy values (right).
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Figure 7: Replacing traditional matching (left) with matching against a programmer-defined virtual tuple (right).

public class TupleSpaceView {

public TupleSpaceView(ITupleSpace ts, IAggregator[] a);

public ITuple rdp(ITuple template);

public ITuple[] rdg(ITuple template);

}

public abstract class Aggregator {

public void setTemplate(ITuple template);

public ITuple getTemplate();

abstract ITuple[] aggregate(ITuple[] tuples);

}

Figure 8: Dealing with tuple space views: TupleSpaceView and Aggregator.
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Figure 9: Aggregating multiple tuples using a tuple space view.
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